Simplified Backjack

This week's Fiddler on the Proof (24 May 2024) Extra Credit asks:

You're playing a modified version of blackjack, where the deck consists of exactly 10 cards numbered 1 through 10. Unlike traditional blackjack, in which the ace can count as 1 or 11, the 1 here always has a value of 1.

You shuffle the deck so the order of the cards is completely random, after which you draw one card at a time. You keep drawing until the sum of your drawn cards is at least 21. If the sum is *exactly* 21, you win! But if the sum is greater than 21, you "bust," or lose.

You decide to be risk averse. Whenever there's even the *slightest* chance you could bust on the next card, you quit the round and start over.

On average, how many rounds should you expect to start until you finally win?

Penultimate Positions

In order to win using the risk-averse strategy, you first need to reach a "penultimate" position. This is a position from which you can win on the next card but is also risk-free in that there is no card remaining in the deck that would put you over 21.

I found 11 penultimate positions, which are listed below. For each position, it is easy to calculate the chance of reaching it. Suppose *n* cards have been played. There are $\binom{10}{n}$ combinations that have that number of cards, so the chance that these particular cards are the ones that appeared is $1/\binom{10}{n}$.

Having reached a penultimate position, there is only one card that will win on the next draw. The chance that of getting that card is 1/(10 - n).

Together, the chance of reaching a particular penultimate position and then winning from there is the product of these two probabilities.

Cards drawn	Number of cards	Chance of reaching	Chance of winning from	Combined probability
	п	$1/\binom{10}{n}$	1/(10 - n)	
	4	1/210	1/6	1/1260
	3	1/120	1/7	1/840
	3	1/120	1/7	1/840
	3	1/120	1/7	1/840
	2	1/45	1/8	1/360

2	1/45	1/8	1/360
2	1/45	1/8	1/360
2	1/45	1/8	1/360
3	1/120	1/7	1/840
2	1/45	1/8	1/360
3	1/120	1/7	1/840

The chance of winning on any given round is 13/630.

Number of Rounds

Let *E* be the expected number of rounds we will need to win. There is a 13/630 chance of winning on the first try and 617/630 that we will have to try again. This implies

$$E = \frac{13}{630} + \frac{617}{630} \cdot (1+E)$$

Solving for *E* gives

$$E = \frac{630}{13} \cong 48.46$$

It will take, on average, **48.46 rounds** to win the game using the risk-averse strategy.