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Abstract 

Neurogammon 1.0 is a complete backgammon program which uses multi- 
layer neural networks to make move decisions and doubling decisions. The 
networks were trained by back-propagation on large expert data sets. Neu- 
rogammon appears to play backgammon at a substantially higher level than 
conventional programs. At the recently held First Computer Olympiad in 
London, Neurogammon won the backgammon competition with a perfect 
record of 5 wins and no losses, thereby becoming the first learning program 
ever to win any tournament. 

1. Introduction 

Back-propagation [12, 4, 6, 71 has now been demonstrated to be a useful 
learning procedure for many classes of real-world practical applications. In 
this paper, a research project is presented which was designed to examine 
whether back-propagation might be useful in higher-level tasks which are 
currently tackled by expert systems and knowledge engineering approaches. 
This project involved teaching networks to play the game of backgammon 
from examples of human expert play. Games in general are a useful test- 
ing ground for learning algorithms because: (a) expert-level play can be of 
tremendous complexity, and (b) problem inputs and performance measures 
are clear-cut and well-defined. The game of backgammon in particular was 
selected because of the predominance of judgement based on static pattern 
recognition, as opposed to explicit look-ahead or tree-search computations. 
(Readers unfamiliar with the game are referred to [5].) 

Previous research in backgammon learning networks was described in 
[ll, 9, 101. Neurogammon 1.0 represents the culmination of this research in 
the form of a fully functioning program. Neurogammon contains one network 
for making doubling decisions, and a set of six networks for move decisions in 
different phases of the game. Each network has a standard fully-connected 
feed-forward architecture with a single hidden layer, and each was trained by 
back-propagation on an expert da.ta set. Training of each network proceeded 
until maximum generalization performance was obtained, as measured by 
performance on a set of test positions not used in training. The networks 
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appear to have learned a great deal of expert backgammon knowledge, and 
the resulting program plays at a substantially higher level than conventional 
backgammon programs, as demonstrated by its decisive 5-0 win at the First 
Computer Olympiad. 

In the following, we examine in detail some of the key ingredients that 
went into the development of Neurogammon. In section 2, a “comparison 
paradigm” for learning expert preferences is introduced, in which the network 
is told that the move preferred by the expert in a given situation should score 
higher than each of the other legal moves not selected by the expert. The 
comparison training paradigm was probably the most crucial ingredient in 
the achievement of Neurogammon’s performance level, and in its victory at 
the Computer Olympiad. 

Section 3 describes a separate network used to make doubling decisions, 
which was trained on a separate data base. Each position in the data base 
was ranked according to a crude nine-point scale of doubling strength in 
money games. Doubling decisions were made by comparing a win probability 
estimate, based on network judgement and on racing considerations, with a 
theoretically optimal doubling point depending on the match score. The 
whole approach to doubling can only described as a quick and dirty “hack” 
done in a limited time before the Computer Olympiad, yet the consensus of 
expert opinion at the Olympiad was that Neurogammon’s doubling algorithm 
was probably the strongest part of the program. Thus this was an instance 
where supervised learning lived up to the (sometimes naive) expectation that 
it can be used to quickly develop a high-performance system with little effort 
on the part of the human programmer. 

In section 4, we examine Neurogammon’s performance at the Computer 
Olympiad. The concluding section discusses the significance of the work, and 
some future directions likely to yield further progress. 

2. 

In [ll], networks were trained to score single moves in isolation, based on 
examples of human expert scores of moves. The input was a description of 
an initial board position and a transition to a final position, and the desired 
output was an expert’s judgement of the quality of the transition from initial 
to final position. The expert judgement recorded in the training data ranged 
from $100 for the best possible move to -100 for the worst possible move 
in a given situation. This approach is hereafter referred to as the “relative 
score” paradigm (RSP). 

The RSP approach gave surprisingly good average performance, but suf- 
fered from a number of fundamental limitations. The training data itself is 
problematic, due to the arbitrary normalization, incompleteness (the human 
expert cannot comment on every possible legal move), difficulty of scoring 
bad moves (necessary for the network, but unusual for the human expert), 
and possible human errors. Furthermore, in this scheme, a sophisticated 
scheme for coding the transition from initial to final board positions was 
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Type of RSPnet CP net 
test set (65 1- 12- 1) (289-1 2- 1) 
bearoff .82 .83 
bearin .49 .63 

opp. bearin .49 .61 
other .55 .69 

opp. bearoff .56 .59 

Table 1: Performance of nets of indicated sizes trained in the relative 
score paradigm (RSP) and in the comparison paradigm (CP) on re- 
spective test sets, as measured by fraction of positions for which net 
agrees with human expert choice of best move. 

required, using human expert concepts such as “slotting” and “stripping” 
points. More fundamentally, however, in the RSP approach, the network 
does not learn an intrinsic understanding of the position itself, but instead 
only learns what kinds of transitions between positions are desirable. Fur- 
thermore, the network can only judge one move at a time in isolation, without 
any knowledge of what other alternative are available. The latter problem 
is the most serious, since from the human expert point of view, the “good- 
ness” or “badness” of a given move often depends on what other moves are 
available. 

In [lo], an alternative training paradigm called the “comparison paradigm” 
(CP) was reported. In this paradigm, the input to the network is two of the 
set of possible final board states, and the desired output represents the hu- 
man expert’s judgement as to which of these two states is better. This cures 
the most fundamental problem of the RSP method, as the network always 
learns to judge a particular move in the context of the other moves that 
are available. The comparison paradigm also has a number of other advan- 
tages. There are no problems due to the expert entering an incorrect score, 
no problems due to arbitrary score normalization, and no problems with un- 
commented moves. Also, one can present only final board positions and thus 
does not need a sophisticated scheme to encode the transitions from initial 
to final positions. Finally, it was shown in [lo] that symmetry and transi- 
tivity of comparisons can be exactly enforced by a constrained architecture 
in which the left half of the network only looks at board position a,  and the 
right half only looks at board position b .  The constrained architecture forces 
each half-network to implement a real-valued absolute evaluation function 
of a single final board position. The network thus does develop an intrinsic 
understanding of the position in this training methodology. 

Test-set performance of RSP nets and C P  nets are compared in table 1. 
(The nets were trained according to the methodology of [lo].) The CP nets 
have a much smaller and simpler input coding scheme, and have significantly 
fewer connections. The CP nets also have much stronger game performance. 
In particular, worst-case performance is dramatically improved by compari- 
son training. 
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3. Neurogammon’s doubling algorithm 

Neurogammon 1.0 has a separate network for making doubling decisions 
which was trained on a separate data set. The doubling data set contained 
about 3000 positions taken from 64 expert games described in [3]. Each po- 
sition was classified according to a crude nine-point ranking scale of doubling 
strength, guided by the commentary in [3]. Of these positions, 225 were set 
aside at random to be used as test data; the remaining positions were used 
as training data. 

The networks trained on this data set had 9 output units corresponding 
to the 9 possible categories. The input representation used a total of 243 
input units. This representation scheme was a simplification of the 289 unit 
scheme for the move selection networks. 

Interpreting the network’s output and measuring its performance on test 
data after training is a somewhat subtle matter. It was decided for simplicity 
to just sum up all nine output values, and interpret that as the network’s 
score for a particular position. An error measure can then be based on the 
difference (T between this score and the recorded teacher score. If (T < 0.5, it 
indicates that the network has scored the position essentially correctly, while 
(T > 1.5 indicates a significant deviation from the correct answer. The best 
performance according this measure was obta.ined with a 243-24-9 network, 
which scored 61% of the test positions within 0.5 of the correct answer, and 
only 6% off by more than 1.5 from the correct answer. 

In order to make optimal doubling decisions according to established the- 
ory [2, 131, one needs an estimate at any point during the game of the prob- 
ability of each side winning the game. This was done in an admittedly crude 
way by dividing the total network score by 10; this gives a number p ,  which 
may be interpreted as the network’s estimate of White’s probability of win- 
ning the game. One can also compute by standard techniques [l, 2, 131 a 
highly accurate estimate of the win probability based solely on the state of 
the race; this gives another estimate of win probability p , .  Neurogammon 
1.0 makes doubling decisions by comparing an interpolated probability p ,  ly- 
ing between pn and p , ,  with the theoretical optimal doubling point po.  The 
interpolation depends on the degree of contact, varying from p = p ,  for fully 
engaged positions to p = p ,  for fully disengaged positions. This interpolation 
scheme is ad hoc, but it does have the effect of reducing or eliminating the 
network’s most serious and most frequent errors. 

4. 

The First Computer Olympiad, which took place Aug. 9-15, 1989, at the 
Park Lane Hotel in London, was a unique event in the history of computer 
games. Organized by computer chess expert David Levy, the Olympiad fea- 
tured competitions in 15 different games, open to any computer program. In 
some of these games, such as chess, Go, and Othello, computer competitions 
have been held regularly for maay years, but for several other games such as 
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both machine learning and computer games research. For machine learning 
researchers (and for neural networks researchers in particular), it provides a 
convincing practical demonstration that network learning algorithms can be 
useful in tackling hard computational tasks. It should be emphasized that 
tournament performance is a severe test of the networks’ ability to extract 
good generalizations from the training data, rather than merely memorize 
specific individual positions. Apart from the first couple of moves at  the 
start of each game, it is highly unlikely that any of the positions encountered 
by Neurogammon at  the Computer Olympiad were contained in the training 
set. 

The significance to computer games research is that it is apparently the 
first time in the history of computer games research that a learning program 
has ever won an official tournament in an established game of skill. Machine 
learning procedures have been studied in computer games environments for 
many years, but learning programs typically have not achieved the levels of 
performance necessary to win in tournament competition. Neurogammon’s 
achievement suggests that learning procedures may be more widely useful in 
other complex games such as chess and Go. 

While Neurogammon can only be described as a strong program, it clearly 
has to improve in a number of ways before it can be claimed to perform at 
human expert level. One obvious improvement would be to train on a larger 
and more varied expert data set containing data from several experts ex- 
hibiting a variety of styles of play. The move-selection networks in particular 
are dangerously inbred, having been trained only on data from one individ- 
ual. Further significant improvement might be obtained by adding a small 
amount of look-ahead, perhaps by going to a 3-ply search. 

Another way in which learning could be improved is by incorporating 
special knowledge about symmetry or topology of the problem either into 
the data representation scheme or the network architecture. For example, 
one knows that the evaluation function should have an exact symmetry in 
that, if the configuration of the Black and White pieces are swapped, and the 
player to move is reversed, then the evaluation should exactly invert, i.e., the 
score S + -S. Also, one knows that backgammon has a one-dimensional 
spatial structure with approximate translation invariance. Explicitly building 
these symmetry principles into the learning system could enable it to extract 
better generalizations from a limited amount of training data. 

Another direction which seems very promising is to abandon supervised 
learning altogether, and instead to learn by playing out a sequence of moves 
against an opponent and observing the outcome. Such a learning system 
could learn on its own, without the aid of an intelligent teacher, and in 
principle could continue to improve until it surpassed even the best human 
experts. Connectionist algorithms such as Sutton’s Temporal-Difference al- 
gorithm [8] could be used in such an approach. It is not known whether such 
algorithms are efficient enough to tackle a problem of the scale and complex- 
ity of backgammon. However, it seems most likely that they could be used 
to learn a highly accurate end-game evaluation function. Since the late (but 
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backgammon, it was the first organized tournament for computer programs. 
Neurogammon faced five opponents in the backgammon competition at 

the Olympiad: three commercial programs (Video Gammon [USA], Saitek 
Backgammon [Netherlands], and Mephisto Backgammon [West Germany]) 
and two non-commercial programs (Backbrain [Sweden] and AI Backgam- 
mon [USA]). Hans Berliner’s BKG program was not entered in the compe- 
tition. All five programs apparently used single-ply search algorithms with 
conventional hand-crafted evaluation functions. In matches to 11 points, 
Neurogammon defeated Video Gammon by 12-7, Mephisto by 12-5, Saitek 
by 12-9, Backbrain by 11-4, and AI Backgammon by 16-1. With five match 
victories and no losses, Neurogammon convincingly won the gold medal for 
backgammon at the Computer Olympiad. Neurogammon also played four 
unofficial matches to small numbers of points against intermediate-level hu- 
mans, and won three out of the four matches. Finally, in an official challenge 
match on the last day of the Olympiad, Neurogammon put up a good fight 
but lost to a human expert, Ossi Weiner of West Germany, by 2-7. Weiner 
was clearly the better player, but the difference in skill levels was not as great 
as suggested by the score. Weiner said that he was impressed by how much 
the program played like a human, how rarely it made mistakes, and that he 
had to play extremely carefully in order to beat it. 

To summarize, there were two main ingredients behind Neurogammon’s 
success at the Computer Olympiad. First, its doubling algorithm turned in a 
very solid performance: although its play was not technically perfect, it did 
not make a single decision that would cause an expert to complain during 
the entire tournament. Second, in comparison to its opponents, its move 
selection was very aggressive and much more in the style of a human expert. 
Several expert strategies and tactics used by Neurogammon (e.g., slotting, 
blitz attacks, and back games, to name some of the most prominent) appeared 
to be missing completely from the other programs. 

It was also interesting to observe the differences in the errors made by 
Neurogammon in comparison to those of its opponents. Neurogammon’s 
errors were mainly tactical in nature; its positional judgement was usually 
quite good. The other programs, however, usually made tactically acceptable 
plays (given their lack of knowledge of expert tactics), but often displayed 
bad positional judgement. This leads one to speculate that a facility to search 
beyond one ply would be more profitably added to Neurogammon than to 
a conventional program. A small amount of look-ahead can cure immediate 
tactical problems, but is unlikely to make a significant improvement in a 
program with fundamentally flawed positional judgement. Other possible 
improvements to Neurogammon are discussed below. 

5 .  Conclusions 

Neurogammon 1.0 demonstrates that a great deal of human expert knowledge 
in a complex domain can be learned by multilayer neural networks from large 
expert data sets. Its victory at the Computer Olympiad has significance for 
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still engaged) stages of the game are precisely where Neurogammon currently 
goes most seriously wrong, learning from outcome could at least provide a 
useful supplement to what can be achieved with supervised learning, and at 
most could be used to learn the entire game to better than human world 
champion level. 
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