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Abstract. This paper examines whether temporal difference meth-
ods for training connectionist networks, such as Suttons’s TD(λ) al-
gorithm, can be successfully applied to complex real-world problems.
A number of important practical issues are identified and discussed
from a general theoretical perspective. These practical issues are then
examined in the context of a case study in which TD(λ) is applied to
learning the game of backgammon from the outcome of self-play. This
is apparently the first application of this algorithm to a complex non-
trivial task. It is found that, with zero knowledge built in, the network
is able to learn from scratch to play the entire game at a fairly strong
intermediate level of performance, which is clearly better than conven-
tional commercial programs, and which in fact surpasses comparable
networks trained on a massive human expert data set. This indicates
that TD learning may work better in practice than one would expect
based on current theory, and it suggests that further analysis of TD
methods, as well as applications in other complex domains, may be
worth investigating.

1. Introduction

One of the most fascinating and challenging paradigms of traditional ma-
chine learning research is the delayed reinforcement learning paradigm. In
the simplest form of this paradigm, the learning system passively observes a
temporal sequence of input states that eventually leads to a final reinforce-
ment or reward signal (usually a scalar). The learning system’s task in this
case is to predict expected reward given an observation of an input state
or sequence of input states. The system may also be set up so that it can
generate control signals that influence the sequence of states. In this case
the learning task is usually to generate the optimal control signals that will
lead to maximum reinforcement.

Delayed reinforcement learning is difficult for two reasons. First, there is
no explicit teacher signal that indicates the correct output at each time step.
Second, the temporal delay of the reward signal implies that the learning
system must solve a temporal credit assignment problem, i.e., must apportion
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credit and blame to each of the states and actions that resulted in the final
outcome of the sequence.

Despite these difficulties, delayed reinforcement learning has attracted
considerable interest for many years in the machine learning community. The
notion of a learning system interacting with an environment and learning to
perform a task solely from the outcome of its experience in the environment
is very intellectually appealing. It could also have numerous practical appli-
cations in areas such as manufacturing process control, navigation and path
planning, and trading in financial markets.

One possible approach to temporal credit assignment is to base the ap-
portionment of credit on the difference between temporally successive pre-
dictions. Algorithms using this approach have been termed “temporal differ-
ence” methods in (Sutton, 1988), and have been studied for many years in
a variety of contexts. Examples include Samuel’s checkers program (Samuel,
1959) and Holland’s bucket brigade algorithm (Holland, 1986). An incremen-
tal real-time algorithm called TD(λ) has been proposed in (Sutton, 1988) for
adjusting the weights in a connectionist network. It has the following form:

∆wt = α(Pt+1 − Pt)
t∑

k=1

λt−k∇wPk (1.1)

where Pt is the network’s output upon observation of input pattern xt at time
t, w is the vector of weights that parameterizes the network, and ∇wPk is the
gradient of network output with respect to weights. Equation 1.1 basically
couples a temporal difference method for temporal credit assignment with
a gradient-descent method for structural credit assigment. Many supervised
learning procedures use gradient-descent methods to optimize network struc-
tures; for example, the back-propagation learning procedure (Rumelhart et
al., 1986) uses gradient-descent to optimize the weights in a feedfoward mul-
tilayer perceptron. Equation 1.1 provides a way to adapt such supervised
learning procedures to solve temporal credit assignment problems. (An in-
teresting open question is whether more complex supervised learning pro-
cedures, such as those that dynamically add nodes or connections during
training, could be adapted to do temporal credit assignment.)

It can be shown that the case λ = 1 corresponds to an explicit supervised
pairing of each input pattern xt with the final reward signal z. Similarly, the
case λ = 0 corresponds to an explicit pairing of xt with the next prediction
Pt+1. The parameter λ provides a smooth heuristic interpolation between
these two limits.

Sutton provides a number of intuitive arguments why TD(λ) should be
a more efficient learning procedure than explicit supervised pairing of input
states with final reward. A rigorous proof is also given that TD(0) converges
to the optimal predicitons for a linear network and a linearly independent
set of input patterns. This proof has recently been extended to arbitrary
values of λ in (Dayan, 1991). However, no theoretical or empirical results
are available for more complex tasks requiring multilayer networks, although
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a related algorithm called the Adaptive Heuristic Critic (Sutton, 1984) has
been successfully applied to relatively small-scale cart-pole balancing problem
(Barto, Sutton and Anderson, 1983; Anderson, 1987).

The present paper seeks to determine whether temporal difference learn-
ing procedures such as TD(λ) can be applied to complex, real-world problem
domains. The paper approaches this question from two perspectives. First,
section 2 identifies a number of important practical issues and discusses them
in the context of the current theoretical understanding of TD(λ). Some of the
issues are familiar to connectionist researchers who have been studying real-
world applications of supervised learning procedures. Other issues are novel
and more complex than those that arise in supervised learning. Next, sec-
tion 3 examines these issues in the context of a specific application: learning
backgammon strategy from the outcome of self-play. This application was
selected because of its complexity and stochastic nature, and because de-
tailed comparisons can be made with the alternative approach of supervised
learning from expert examples (Tesauro, 1990). We shall see that, despite
a number of potentially serious theoretical and practical problems, the TD
approach works amazingly well. With zero built-in knowledge (apart from
the rules), networks are able to learn to play a fairly strong intermediate-
level game. The level of performance achieved not only exceeds conventional
commercial programs, but perhaps more surprisingly, it also surpasses what
can be achieved by supervised training on a massive data base of human
expert examples. The final section discusses the implications of these results
for more general practical applications, and suggests a number of directions
for further research.

2. Practical issues in TD learning

2.1 Task-dependent considerations

Learning to predict and control simultaneously: A number of impor-
tant practical issues in TD learning have to do with the exact nature of the
task to be learned. For example, is the task purely a prediction task, or
is it a combined prediction-control task? The latter is more representative
of typical real-world problems, but is also presumably more difficult. The
issue of simultaneously learning to predict and learning to control was not
addressed in (Sutton, 1988), and may lie outside the scope of the TD(λ)
algorithm. It might be necessary to train a separate controller network with
a different algorithm while the predictor network is learning with the TD
algorithm. Alternatively, one can imagine some tasks in which the output
of the predictor could be used to select the control action, for example, by
choosing the state with maximum expected reward. In either case it is not
known whether the combined learning system would converge at all, and if
so, whether it would converge to the optimal predictor/controller. It might
be possible for the system to get stuck in a self-consistent but non-optimal
predictor/controller.
Stationary vs. changing tasks: Another important issue is whether the
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task is stationary or changes over time. Also, even for fixed tasks, it is possi-
ble that the distribution of input patterns might change over time. In either
case one would want the network to continually adapt in real time to chang-
ing conditions. However, there are presumably trade-offs between accuracy of
learning and ability to respond to changing conditions. Such trade-offs have
been extensively analyzed for the Widrow-Hoff LMS rule (Widrow, 1976),
but have not been analyzed for TD learning.
Markovian vs. non-Markovian tasks: Another important issue is whether
the transitions from state to state are Markovian, i.e., depend only on the
current state, or whether they also depend on the history of previous states.
The analysis in (Sutton, 1988) is only for Markovian processes, as it is pointed
out that any non-Markovian process can be included within this framework
by recoding the current state information so that it also contains all relevant
information from previous states. However, in practice, this may make the
input space so large and complex that the learning algorithm wouldn’t work
very well.
Multiple outcomes: The simplest types of reinforcement tasks are char-
acterized by a binary reward signal (e.g. a success/failure signal), but more
general and more complex tasks may have many different possible outcomes.
The way in which these outcomes are represented in the network may be just
as important as the way in which the inputs are represented. Moreover, some
of the outcomes may have a much lower likelihood of occurring than other
outcomes, and one might expect that such rarely occurring outcomes would
be harder to learn. In this case, one might need special techniques analogous
to those used in pattern classification tasks when some of the classes have a
much lower probability of occurring than other classes.
Noisy environment: A final issue is whether the environment is noisy or
deterministic. Noise may appear, for example, in the rules which govern
transitions from state to state, and in the final reward signal given at the
terminal states. An important consideration which we examine in more detail
below is the volatility of the stochastic environment, i.e., the step-to-step
variance in expected reward. We shall see that learning is more difficult in
highly volatile environments, and that a natural way to approach learning in
such environments is with a look-ahead process akin to search or planning.
Noise may also enter into the representation of input patterns seen by the
network. This was not addressed by Sutton, and it is not known to what
extent such noise degrades the learning performance.

2.2 Algorithmic considerations

Parameter tuning: As in other connectionist learning procedures, the
TD(λ) algorithm has a number of adjustable parameters that have to be
heuristically tuned for a given network and task. The main parameters are
the learning rate α, and of course, λ itself. Ideally, one might want not just
a fixed constant value of each parameter, but a schedule for varying the pa-
rameter value as a function of learning time. For example, when training a
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network on a stationary task, one probably needs a schedule for reducing the
learning rate analogous to the 1/t schedules known in the stochastic approxi-
mation literature (Robbins and Monro, 1951). Also, a schedule for λ may be
useful. Setting λ to a large value early in learning might help the network get
off the ground quickly, while later in learning, when the predictions become
more accurate, it might be better to use smaller values of λ.
Convergence: As stated previously, convergence of TD(λ) has only been
proved for linear networks and linearly independent sets of input patterns.
In the more general case, the algorithm may not converge even to a locally
optimal solution, let alone to a globally optimal solution.
Scaling issues: Scaling considerations are often of critical importance in
successful practical applications of network learning procedures. No results
are available to indicate how the speed and quality of TD learning will scale
with the temporal length of sequences to be learned, the dimensionality of the
input space, or the dimensionality of the network (as measured, for example,
by the number of weights or by the VC dimension (Vapnik and Chervonenkis,
1971)). Intuitively it seems likely that the required training time might
increase very dramatically, possibly exponentially, with the sequence length.
The training time might also scale poorly with the network or input space
dimension, e.g., due to increased sensitivity to noise in the teacher signal.
(In contrast, with perfect teacher information, we might expect the required
number of training sequences to scale roughly linearly with the network’s
VC dimension (Blumer et al., 1989)). Another potential problem is that the
quality of solution found by gradient-descent learning relative to the globally
optimal solution might get progressively worse with increasing network size.
Overtraining and overfitting: One potential advantage of the TD ap-
proach is that, unlike most applications of supervised learning, a fixed data
set is not used. Instead, training takes place on-line using patterns generated
de novo. One might hope that in this situation, performance would always
improve monotonically with increasing training time, i.e., overtraining would
not occur. One might also hope that one could always improve the perfor-
mance of the TD nets by adding more and more hidden units to the network,
i.e, overfitting would not occur.

Both overtraining and overfitting may occur, however, if the error function
minimized during training does not correspond to the performance function
that the user cares about. For example, the performance that one cares
about for a game-playing network is not how accurately it estimates the
probability of winning in a given position, but rather its ability to select good
moves. It may be the case that the network could produce fairly accurate
predictions but not select very good moves. One would especially expect
this to be true for games in which the best move is only slightly better than
other alternatives. On the other hand, if the network has large errors in
the absolute accuracy of its predictions, it could still be able to select good
moves. This is because, as discussed in (Christensen and Korf, 1986; Utgoff
and Clouse, 1991), a heuristic evaluation function need not exactly represent
the true values of states for correct move selection. Instead, it only needs
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Move True prob. Network #1 Network #2
A 0.846 0.842 0.719
B 0.840 0.843 0.621

Table 1: An example showing the difference between a good pre-
dictor and a good move selector. The network must choose either
move A or move B. The true probabilities of winning are 0.846 and
0.840 respectively. Network #1 makes highly accurate estimates of
the probabilities of winning, but selects the wrong move. Network
#2’s estimates have large errors, but it picks the right move.

to have the correct sign for the slope between pairs of points in order to
make correct state preferences. There may be many such functions, with
widely varying degrees of prediction accuracy. A simple example illustrating
this is shown in table 1. Overtraining and overfitting might also occur if
the distribution of input training and testing patterns are different. For
example, the game-playing network might be trained on its own play, but
have to perform against other players. The differing styles of play would
lead to different distributions of input patterns.
Incremental learning: A nice feature of TD(λ) is that the weights can
be updated in a fully incremental fashion. It is not necessary to wait until
the end of the sequence to compute the weight change at a given time step.
However, this may not be strictly necessary in practical implementations.
Modern workstations have enough memory to store the entire sequence of
input and output patterns, even for fairly large problems, as long as the
sequences terminate in a reasonable amount of time. If the sequence is so
long that it cannot be stored, the algorithm may not be able to learn the task
in any case. Thus one could imagine other algorithms that give improved
performance at the price of sacrificing the fully incremental nature of TD(λ).

2.3 Representational issues

The way in which the input and output data are represented in multilayer
connectionist networks has been found to be one of the most important fac-
tors in successful practical applications of supervised learning procedures.
Such representational issues are likely to be equally important in practical
applications of temporal difference learning. It is useful to distinguish be-
tween two basic kinds of representations: (a) lookup table representations, in
which the network has enough adjustable parameters to explicitly store the
correct output for every possible state in the input state space; and (b) com-
pact representations, in which the number of adjustable parameters is much
less than the number of states in the state space, and the network therefore
has to capture the underlying regularity of the task.

In (Sutton, 1988), the TD(λ) algorithm is discussed only in terms of

6



lookup table representations. However, the way in which TD learning works
for lookup table representations is likely to be completely different from the
way it works for compact representations. With lookup table representations,
it is clear that the network has no way to estimate the predicted outcome of a
particular state unless it has actually observed the state. Thus in order for the
network to learn the entire function, it has to observe every possible state in
the state space. In fact, Sutton’s convergence theorem requires every possible
state to be visited infinitely many times in order to guarantee convergence.
This will clearly be intractable for real-world problems. Even if the state
space is discrete, the number of possible states is likely to be so large that
there is neither sufficient storage capacity to store the lookup table, nor
sufficient time to visit all possible states.

On the other hand, with compact representations, it might be possible
to learn complex tasks in high-dimensional spaces reasonably well. After
observing an infinitesimal fraction of all possible states, the network might
be able to find a solution that generalizes acceptably for states not seen during
training. Thus we can see that the ability of compact networks to generalize
provides an ability to tackle otherwise intractable problems. However, there
are also a number of limitations to the generalization capability of compact
networks. For example, if the task is complex, a network with a limited
number of hidden units might not have enough structural complexity to
exactly represent the task. Also, the gradient-descent method of assigning
structural credit within the network can only find local optima, not global
optima. Such factors will limit the effectiveness of TD learning in complex
domains.

2.4 Volatility limit

Let us examine equation 1.1 in more detail. Note that for any given input
state xt, there is a true expected outcome θt associated with that state, and
Pt is the network’s estimate of θt. If we had access to the values of θt we
could use them to do back-propagation learning on the input-output pairs
(xt, θt). But in TD learning θt is not available. Instead, note that the next
prediction Pt+1 is used in a role analogous to θt in back-propagation. The
network output Pt is being driven toward Pt+1, and no learning takes place
when Pt = Pt+1. It should be intuitively clear that in TD learning, Pt+1 is
being used as a heuristic stochastic estimator of the true expected outcome
θt. It should also be clear that the learning algorithm will only make progress
when Pt+1 is a more accurate stochastic estimator of θt than Pt is.

There are a number of reasons why Pt+1 might not be a more accurate
stochastic estimator of θt than Pt is. One possibility comes from the fact that
the network has to generalize in any practical problem, as discussed previ-
ously. The network’s generalizations for states near the end of the sequence
may well be less accurate than for states far from the end.

Another reason why Pt+1 may fail to be a more accurate estimator of θt is
due to volatility in the environment. As learning progresses, Pt approaches
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θt, while Pt+1 approaches θt+1. Now in highly volatile environments, θt+1

may vary significantly from θt. It is true that the average value over all
possible states that can evolve from xt is given by < θt+1 >= θt, but we must
remember that the network does not get to see infinitely many evolutions
from xt. In a typical complex problem, the network will only see xt once,
and thus only one state following xt. If the value of xt+1 has little to do with
the value of xt due to high volatility, then Pt+1 may be a poor estimator of θt.
Furthermore, in some problems it could be the case that volatility increases
with time, so that states near the end of the sequence are more volatile than
earlier states. This would provide a further limitation on the ability of Pt+1

to estimate θt more accurately than Pt.
A natural way to try to overcome limitations due to volatility of the

environment is to allow multiple evolutions from a given state, i.e., for each
observed xt, reset the state to xt many times and let the stochastic process
generate a distribution of successor states xt+1 with average expected reward
< Pt+1 >. The error signal at each time step would then be proportional to
< Pt+1 > −Pt. The multiple samples would provide an estimate of < θt+1 >,
which, as stated previously, should equal θt. If the temporal evolution at
each step is governed by a stochastic process with a small number of possible
outcomes (such as flipping a coin or rolling dice), one could explicitly compute
an average over all possible outcomes.

3. A case study: TD learning of backgammon strategy

We have seen that current theory provides little indication of how TD(λ) will
work in practice. In the absence of theoretical guidance, we now empirically
examine the previously discussed practical issues within the context of a
specific application: learning to play the game of backgammon from the
outcome of self-play. Complex board games such as checkers, chess, Othello
and backgammon have been widely studied as testing grounds for various
machine learning procedures (Samuel, 1959; Samuel, 1967; Griffith, 1974;
Quinlan, 1983; Mitchell, 1984; Frey, 1986; Christensen and Korf, 1986; Lee
and Mahajan, 1988; Tesauro and Sejnowski, 1989; Tesauro, 1990). Several
of these studies have employed temporal difference learning methods.

Unlike checkers, chess, and Othello, backgammon is a nondeterministic
game in which the players take turns rolling dice and moving their pieces
around the board as allowed by the dice roll. The first player to move all of
his pieces around and off the board wins the game. The game is complicated
because it is possible to “hit” opponent pieces and send them to the far end
of the board, and to form blocking configurations that impede the forward
movement of opponent pieces. These facts lead to a number of subtle and
complex strategies and tactics at the highest levels of play (Magriel, 1976).

Backgammon offers a number of attractive features as a test vehicle for
TD learning approaches. Due to the stochastic dice rolls, the evolution of
board states during the course of a backgammon game can be characterized
as an absorbing Markov process, in which the initial state is always a unique
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starting configuration, and in which the subsequent transitions proceed ran-
domly, depending only on current state information, until a well-defined ter-
minal state is reached, characterized by one side having all its pieces off the
board. This is precisely the type of situation for which TD(λ) was designed.
Playing the game at expert level involves considerable complexity, but it has
been demonstrated (Berliner, 1979; Tesauro and Sejnowski, 1989) that much
of this complexity can be captured in a static evaluation function and does
not require deep look-ahead searches. This means that a feed-forward neural
network could learn a static evaluation function that would play well without
search, and that the quality of learning can be directly assessed by measuring
game performance. (In contrast, the performance of a search-based program
depends on both the quality of the evaluation function and the power of the
search procedure.) Finally, it is possible to make a detailed comparison of
TD learning with the alternative approach of supervised learning from expert
examples (Tesauro, 1990). This is important for general practical applica-
tions, because in order for TD learning to be successful in the real world, it
not only has to work well on hard problems, but it also has to be competitive
with other approaches such as supervised learning.

It seems reasonable that, by watching two fixed opponents play out a large
number of games against each other, a network could learn by TD methods
to predict the expected outcome of any given board position. In addition to
estimating expected outcome, such a network could also be used for move
selection by generating all legal moves in a given position and picking the
move with the maximum expected outcome. A more interesting learning
question, however, is whether the network could learn from the outcome of
its own play. As the network learns, its control strategy changes, and thus
the distribution of input patterns and final rewards would also change. This
is the type of learning that will be examined in this section, even though it
is not clear a priori that such a learning system would converge to a sensible
solution.

3.1 Set-up of the learning system

The TD(λ) algorithm can be applied to backgammon in the following straight-
forward way: a network is set up to observe a sequence of board positions
x1, x2, ..., xf , resulting in a final reward signal z. In the simplest case the
reward signal is z = 1 if White wins and z = 0 if Black wins. In this case the
network’s output Pt is an estimate of White’s probability of winning from
board position xt. The sequence of board positions is generated by setting
up an initial configuration, and making plays for both sides using the net-
work’s output as an evaluation function. In other words, the move selected
at each time step is the move that maximizes Pt when White is to play and
minimizes Pt when Black is to play.

A critical factor in the overall performance of the learning system is the
representation scheme used to encode the input board description. It is
well known in computer games research that significantly higher levels of
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performance can be achieved if the board state is described using “features”
relevant to good play, as opposed to a “raw” board description. In the exper-
iments reported here, however, the input encoding schemes only contained
simple encodings of the raw board information (the number of White or
Black men at each location) and did not utilize any additional pre-computed
features.

Since the input encoding scheme contains no built-in knowledge about
useful features, and since the network only observes its own play, we may say
that this is a “knowledge-free” approach to learning backgammon. Such an
approach is interesting because it is not clear that it can make any progress at
all beyond its starting state, which for a network with random initial weights
is a random move selector. The zero-knowledge approach also provides an
important baseline for judging other approaches using various forms of built-
in knowledge.

The approach described above is similar in spirit to Samuel’s approach to
learning checkers from self-play, but in several ways it is a more challenging
learning task. One important difference is that Samuel’s board description
was in terms of a number of hand-crafted features, several of which were
designed in consultations with human checkers experts. However, the net-
works studied here use only a raw board description and had no knowledge
built into the input features. The evaluation function learned in Samuel’s
study was a linear function of the input variables, whereas multilayer net-
works learn more complex nonlinear functions. Also, the final reward signal
in backgammon is noisy due to the dice rolls; this presumably makes the
learning task more difficult than in noise-free games such as checkers. The
branching ratios in backgammon are so large that look-ahead methods can-
not be employed, whereas Samuel used search both in move selection and
in calculation of the learning algorithm’s error signal. Finally, Samuel found
that it was necessary to give the learning system at least one fixed interme-
diate goal, material advantage, as well as the ultimate goal of the game. The
proposed backgammon learning system has no such intermediate goals.

3.2 Learning disengaged bearoff strategy

Like many other games, the full complexity of backgammon is greatly simpli-
fied in certain special situations. For example, finding good moves in racing
situations, in which hitting and blocking are not possible, is considerably
easier than in fully engaged positions, in which hitting and blocking are pos-
sible. The first TD experiments we shall examine are designed to learn the
case of disengaged bearoff positions, in which both sides have all of their
men in their home quadrant and can remove them from the board. This is
an exceedingly simple situation because there is a simple yet strong heuristic
for correct play: always select the move that takes the maximum number of
pieces off the board. This principle is only violated in certain rare situations.
If the principle does not uniquely determine a move, a secondary considera-
tion is to distribute the remaining men as smoothly as possible; this usually
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determines the best move. (An interesting exception to this rule is discussed
in (Berliner, 1977).)

Another advantage of studying this situation is that it can be solved es-
sentially exactly by conventional algorithms (Berliner, 1977; Zadeh, 1977).
For each of the approximately 54,000 possible bearoff configurations for a
given side, one can recursively compute and store in a table the exact prob-
ability of removing all men in one roll, two rolls, three rolls, etc.. One can
then use this information to compute the exact probability that either side
will win. Thus, in addition to comparisons with supervised learning of expert
examples, one can also compare the results of TD learning with the exact
optimal move choices and probabilities of winning.

The networks trained on this task had 16 units to encode the board
description: 6 units to encode the number of Black men at locations 1-6,
6 units to encode the number of White men at locations 19-24, 2 units to
encode the number of White and Black men off the board, and 2 units to
encode the side to move. The networks had a feedforward structure with full
connectivity from one layer to the next. Two architectures were examined: a
single-layer architecture with direct input-output connections and no hidden
units, and a multi-layer architecture containing a single hidden layer with
varying numbers of hidden units. The single-layer architecture can only
represent linearly separable functions (Minsky and Papert, 1969), while the
multi-layer architecture, given sufficient hidden units, is capable of universal
function approximation (Hornik, Stinchcombe and White, 1989). Both the
hidden units and the output unit utilized a sigmoidal transfer function y =
1/(1 + e−x).

The initial board configurations were generated randomly by distributing
all 15 men for each side with uniform probability in the six home board
locations. With this distribution of initial positions, the average sequence
length is about 14 time steps with good play on both sides.

As with back-propagation, a certain amount of parameter tuning was
required to get good results with the TD(λ) algorithm. It was found that
a learning rate of α = 0.1 usually gave good results. Lower learning rates
did not improve the maximum performance (although they did reduce the
level of stochastic fluctuations in performance), whereas significantly higher
learning rates did degrade performance. Also, the value of λ appeared to
have almost no effect on the maximum obtainable performance, although
there was a speed advantage to using large values of λ. The results reported
here used a value of λ set (somewhat arbitrarily) at 0.7. The initial random
weight scale also did not appear to be important; in the results reported here,
weights were initialized to uniform random values in the range [-0.5,+0.5].

Two measures of performance were monitored to assess the results of
learning. The absolute prediction error was monitored by comparing the
network’s outputs for the positions seen during training with the exact win
probabilities computed from the lookup tables. (One should keep in mind
that these exact probabilities were not used as part of the training signal.)
The network’s move selection ability was also monitored during training by
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measuring the fraction of time the network selected the theoretically optimal
move in a fixed set of test positions. (There were 210 test positions, taken
from a set of games in which the author played both sides. This test set
was pruned from a larger set of over 300 positions by deleting all positions
with no unique best move, according to the lookup tables. In most of the
deleted positions, the probability of winning was either exactly 1 or exactly
0 regardless of which move was selected.)

A perhaps surprising discovery was that, apart from stochastic fluctua-
tions controlled by the value of α, the absolute prediction error always de-
creased during training. On the other hand, the move-selection performance
usually reached a maximum after several tens of thousands of games, and
then decreased thereafter. (Due to the stochastic training procedure and the
relatively flat nature of the learning curves, it is difficult to say precisely
when the maximum performance was reached.) As stated previously, this
“overtraining” could be due to the differing distributions of training and test
positions, or it could also be due to the difference between the function mini-
mized by the learning algorithm (prediction error) and the function that the
user cares about (move-selection ability).

The level of move-selection performance obtained by the networks was
also surprising in view of the average absolute prediction errors. Typically
the networks are only able to estimate the probability of winning to within
about 10% of the true probability. On the other hand, one usually needs to
make discriminations at the 1% level or lower for accurate move selection.
Thus based on this consideration alone, one would expect the networks to
be rather poor move selectors. However, figure 1, which plots move-selection
performance as a function of the number of hidden units for TD-trained
networks, shows that performance is in fact quite good. Furthermore, the
networks with hidden units clearly do better than networks without hidden
units. This indicates that the networks have absorbed some of the nonlinear
aspects of the problem, and are not just implementing a linear rule such as
“maximize the number of pieces taken off the board.” It is also reassuring
that this nonlinear structure can be learned in the TD procedure, despite the
lack of any theoretical guarantees.

Also plotted for comparison are the results of supervised training of iden-
tical networks with identical coding schemes on a data set of about 1700
training positions. In each training position, a human expert (the author)
recorded a preference of best move. The training methodology is the “com-
parison paradigm” described in (Tesauro, 1989), in which the network is
trained by back-propagation to score the expert’s move higher than each of
the other legal moves.

We can see that, as is usual with back-prop nets trained on a fixed data
set, the ability to increase performance by adding more hidden units is even-
tually lost for sufficiently large nets: at this point, the networks start to
overfit the training data. On the other hand, since the TD nets are not
trained on a fixed data set, the performance can in principle always be im-
proved by adding more hidden units. We do in fact find that, at least for
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Figure 1: Plot of move selection performance vs. number of hidden
units for networks trained on disengaged bearoff positions using TD
learning from self-play (TD), and supervised training on human expert
preferences (EP). Both learning systems used identical 16-unit coding
schemes.

the network sizes studied here, performance increases monotonically with
the number of hidden units, and that the TD nets eventually catch up to the
performance level of the nets trained on expert preferences (denoted EP in
figure 1).

One should note that the absolute prediction error of the TD nets gen-
erally gets worse as the end of the game approaches. This is not surprising,
because states far from the end can be accurately represented by a simple
pip count approximation, but this breaks down when there are only a few
pieces left. Also for this particular task, states near the end of the game
have higher volatility than states far from the end. As stated previously,
these factors may provide important limits to the ability of TD learning to
approach theoretically optimal performance.

3.3 Learning full-board racing strategy

The results of TD training of disengaged bearoff situations were encouraging
enough to attempt the next logical extension: training of general racing
situations covering the entire board. These situations require many more
units to encode the board description, and they are usually more complicated
because of the possibility of bonus wins called “gammons.” These occur
when one sides removes all its pieces before the other side takes off any
pieces, and the point value awarded is double the normal value. (There is
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also the possibility of winning a triple-value “backgammon,” but this will not
be considered here.) Thus in a general racing situation, if one has men in the
outer quadrants, one has to choose between playing for a win and avoiding
the loss of a gammon. Strategies in these two cases are usually different. For
example, in gammon avoidance situations it is usually correct to bear men
in to the 6 point, whereas if there is no gammon risk, one should distribute
one’s men evenly on the 6, 5 and 4 points.

The possibility of winning a gammon means that a game can now end in
one of four possible outcomes. A straightforward way to handle this is to use a
four-component reward signal, with each component corresponding to one of
the four possible outcomes. One would then train a network with four output
units, which would learn to estimate for any input position the probabilities
of the four separate outcomes. (Without additional constraints, however,
there would be no guarantee that the network’s estimated probabilities would
sum to 1.) For move-making decisions, one could use the network’s estimated
probabilities to estimate expected payoff, and select the move that maximizes
expected payoff. Specifically, if (p1, p2, p3, p4) are the network’s estimates of
the probabilities of (W wins, W gammons, B wins, B gammons), then the
expected payoff to White is given by p1 + 2p2 − p3 − 2p4. Thus even in this
more complex situation, one can still cast the problem as a prediction learning
problem only, and can use the predictor network’s outputs to generate control
decisions without training a separate control network.

For TD training of general race situations, a 52-unit coding scheme was
used: 24 units each to encode the number of White or Black men at locations
1-24, 2 units to encode White and Black men off, and 2 units to encode the
player to move. A modified four-component reward signal was used in the
units representing regular wins were activated if a side had either a regular or
a gammon win. This should be easier to learn for a network with sigmoidal
units, since a unit that only represents regular wins has to learn a non-
monotonic function of the lead in the race. The initial board configurations
were generated by randomly picking a divider location on the board, and
randomly distributing all White men uniformly to one side and all Black men
uniformly to the other side of the divider location. With this distribution of
starting positions, the average number of time steps from start to finish was
about 20, as compared to 14 in the bearoff experiments. As in the previous
section, the algorithm parameters were set at α = 0.1 and λ = 0.7.

In this more complex situation, algorithms are no longer available for
computing the exact outcome probabilities. Hence the only performance
measure used was the fraction of time the network agreed with a human
expert (the author) on the best move in a fixed set of 248 full-board racing
test positions. This test set measure is less reliable than in the previous
section, because there may be significant human errors in the choice of best
move. There may also be a substantial fraction of positions in which the
outcome is uniquely determined regardless of which move is made.

Results of TD training are shown in figure 2, which plots maximum test
set performance as a function of number of hidden units. Once again these
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Figure 2: Plot of move selection performance vs. number of hidden
units for networks trained on full-board racing positions using TD
learning from self-play (TD), and supervised training on human expert
preferences (EP). Both learning systems used identical 52-unit coding
schemes.

results are compared with networks using an identical coding scheme trained
on a data set of about 3100 human expert examples. Once again the TD
networks reached peak performance after several tens of thousands of games.
For this task, no clear evidence of overtraining was seen; thus with further
training it might be possible to obtain higher levels of performance.

We can see that, despite the increased size of the input space, complexity
of the task, and length of the sequence, the TD networks still were able to
achieve a high level of performance. The test set performance is almost as
good as the EP nets. In fact, since the test set measure is admittedly biased
in favor of the expert-trained nets (which could pick up consistently wrong
or arbitrary stylistic preferences of the expert), one may legitimately wonder
whether the TD net really is inferior in an absolute sense, and if so, by how
much. Also, further improvements in TD performance might be obtainable
by adding more hidden units to the TD networks, by training longer, or by
using a more representative distribution of starting positions.

Qualitatively, the TD nets appear to have discovered many important
ingredients of general racing strategies. The main apparent defect is a ten-
dency to waste pips when the network has both a small chance of winning
and a small chance of losing a gammon. In this case a human would try to
remove all doubt about saving the gammon, whereas the network tends to
make plays that suggest trying to win.
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3.4 Learning to play the entire game

We now consider extending TD learning to cover more general engaged sit-
uations, in which hitting and blocking are possible. These situations are
much more complex than racing situations, and the sequences can be much
longer. (In typical human play the average sequence length from start to
finish is around 50-60 time steps, whereas for random move selectors, games
can last several hundred or even thousands of time steps.) Also the optimal
strategy for one side depends more critically on what strategy the opponent
is using, whereas in racing situations the choice of best move is largely inde-
pendent of the opponent’s strategy. This means that a network adapting to
its own play has a more serious possibility of getting stuck in self-consistent
but non-optimal strategies.

The networks trained on this task used an expanded scheme to encode
the local information. Rather than a single unit to encode the number of
men of a given color at a given location, a truncated unary encoding with
four units was used. The first three units encoded separately the cases of one
man, two men, and three men, while the fourth unit encoded the number
of men beyond 3. (In the development of Neurogammon, it was found that
truncating at 5 or 6 units rather than 4 units gives better performance but
of course takes longer to simulate.) This coding scheme thus used 96 units
for each side to encode the information at locations 1-24, and an additional 6
units to encode the number of men on the bar, off the board, and the player
to move, for a total of 198 input units.

The parameter settings in these experiments were once again α = 0.1
and λ = 0.7. A few experiments with smaller and larger values of λ seemed
to indicate that larger values would decrease the performance, while smaller
values would give about the same performance.

Networks were trained on the entire game, starting from the opening
position and going all the way to the end. This is an admittedly naive
approach, and given the complexity of this task, one might wonder whether
it would actually work. Alternatively, one can consider dividing the game into
a number of phases (e.g. early engaged, middle engaged, late engaged, and
race), and using as a heuristic reward for a given phase the network output
for the next phase. Some preliminary experiments were performed with a
two-phase approach in which the network was trained up to the point of
disengagement, and the output of a previously trained racing net (described
in the previous section) was used as a heuristic reward. In this way the
network would see a shorter sequence of positions, and its evaluation function
would be simpler than the evaluation function needed for the entire game. On
the other hand, there may be problems due to the fact that the racing network
was trained with a somewhat arbitrary distribution of starting positions.
Furthermore, any systematic biases in the racing network’s judgement might
be transferred to the engaged network. Empirically this two-phase approach
seemed to offer some potential for improving the performance of smaller nets,
but not for larger nets, and view of the above-mentioned theoretical concerns,
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Figure 3: Plot of move selection performance in general engaged po-
sitions vs. number of hidden units for networks trained using TD
learning from self-play (TD), and supervised training on human ex-
pert preferences (EP). Both learning systems used identical 198-unit
coding schemes.

this approach was eventually abandoned.
Training a single net on the entire game was not expected to yield any use-

ful results other than a reference point for judging more sensible approaches.
However, the rather surprising result was that a significant amount of learn-
ing actually took place. Performance on the 248-position racing test set
reached about 65%. (This is substantially worse than the racing specialists
described in the previous section.) Performance on a separate set of 500 full-
contact test positions is plotted in figure 3. Again these figures are compared
with results of supervised training on a human expert training set containing
over 15,000 engaged positions. We can see that the TD nets reached levels of
performance well beyond the initial random networks, showing that substan-
tial learning took place. (The random initial networks only select the right
move about 5% of the time.) The performance levels lag somewhat behind
what can be achieved with expert preference training, but we must remember
that this test set measure may not give the most accurate assessment of true
game-playing strength.

A more accurate and objective measure of game-playing strength is actual
game performance against an opponent. Both the TD nets and the EP nets
have been tested in actual game play against Sun Microsystems’ Gammon-
tool program. Gammontool is representative of the level of performance that
is typically achieved with conventional commercial programs, and provides a
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Figure 4: Plot of game performance against Gammontool vs. number
of hidden units for networks trained using TD learning from self-play
(TD), and supervised training on human expert preferences (EP).
Each data point represents the result of a 10,000 game test, and should
be accurate to within one percentage point.

decent benchmark for measuring game-playing strength. Human beginners
can win about 40% of the time against it, decent intermediate-level humans
would win about 60%, and human experts would win about 75%. (The ran-
dom initial networks before training win only about 1%.) Since the EP nets
are trained on engaged positions only, the testing procedure is to play out the
game with the network until it becomes a race, and then use Gammontool’s
algorithm to move for both sides until the end. This also does not penalize
the TD net for having learned rather poorly the racing phase of the game.
Results are plotted in figure 4.

Given the complexity of the task, size of input space and length of typical
sequences, it seems remarkable that the TD nets can learn on their own to
play at a level substantially better than Gammontool. Perhaps even more
remarkable is that the TD nets surpass the EP nets trained on a massive
human expert data base: the best TD net won 66.2% against Gammontool,
whereas the best EP net could only manage 59.4%. This was confirmed in
a head-to-head test in which the best TD net played 10,000 games against
the best EP net. The result was 55% to 45% in favor of the TD net. This
confirms that the Gammontool benchmark gives a reasonably accurate mea-
sure of relative game-playing strength, and that the TD net really is better
than the EP net. In fact, the TD net with no features appears to be as
good as Neurogammon 1.0, backgammon champion of the 1989 Computer
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Olympiad, which does have features, and which wins 65% against Gammon-
tool. A 10,000 game test of the best TD net against Neurogammon 1.0
yielded statistical equality: 50% for the TD net and 50% for Neurogammon.

The TD net’s performance against these three opponents indicates that
it has reached a significant level of playing ability. This violates a widely
held belief in computer games and machine learning research that significant
levels of performance in game-playing programs can only be achieved through
the use of hand-crafted features in the evaluation function. Apparently the
hidden units in the TD net have discovered useful features through self-play.
When one looks at the pattern of weights learned by the TD net, one can
see a great deal of spatially organized structure, and some of this structure
can be interpreted as useful features by a knowledgable backgammon player.
Figure 5 shows the weights from the input layer to two of the hidden units in
the best TD net. Both hidden units contribute positively to the estimation of
Black’s chances of winning and gammoning, and negatively to the estimation
of White’s chances of winning and gammoning. The first hidden unit appears
to be a race-oriented feature detector, while the second hidden unit appears
to be an attack-oriented feature detector.

The training times needed to reach the levels of performance shown in
figure 4 were on the order of 50,000 training games for the networks with 0
and 10 hidden units, 100,000 games for the 20-hidden unit net, and 200,000
games for the 40-hidden unit net. Since the number of training games appears
to scale roughly linearly with the number of weights in the network, and the
CPU simulation time per game on a serial computer also scales linearly with
the number of weights, the total CPU time thus scales quadratically with the
number of weights: on an IBM RS/6000 workstation, the smallest network
was trained in several hours, while the largest net required two weeks of
simulation time.

The networks did not appear to overtrain, but it is not clear whether the
performance increases very slowly with further training or stays flat. Since
the networks in the previous sections also required several tens of thousands of
training games, this suggests that the number of training sequences needed to
train a TD network may not scale badly with the task complexity or average
sequence length. Instead, the training time may just depend on the number
of bits of information needed to specify a trained network, and on how many
bits of information are received per game. Since the outcome of each game
gives one bit of information (two bits including gammons), and since the
networks have several thousand weights that probably must be specified to
at least 4-8 bits of accuracy, this suggests a training time on the order of tens
of thousands of games.

Some qualitative observations on the styles of play learned by the TD
and EP nets are worth noting. The TD nets have developed a style em-
phasizing running and tactical play. For example, it prefers to immediately
split its back men rather than bringing down builders or slotting home board
points. It is good in running game situations and in tactical situations such
as blot-hitting contests and blitz attacks. The EP nets, however, favor a more
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Figure 5: A diagram illustrating the weights from the input units to
two of the 40 hidden units in the best TD net. Black squares rep-
resent negative weights and white squares represent positive weights;
the size of the sqaure indicates the magnitude of the weights. The
rows represent from bottom to top the spatial locations 1-24. The
top row represents: (W barmen, B barmen, W men off, B men off, W
turn, B turn). The columns represent the number of Black and White
men as indicated. The first hidden unit has two noteworthy features:
a linearly increasing pattern of negative weights for Black blots and
Black points, and a negative weighting of White men off and a positive
weighting of Black men off. These features are recognizable as con-
tributing to an estimate of Black’s probability of winning based on his
lead in the race. The second hidden unit has the following noteworthy
features: strong positive weights for Black home board points, strong
positive weights for White men on bar, positive weights for White
blots, and negative weights for White points in Black’s home board.
The experienced backgammon player recognizes that these factors all
contribute to the probability of a successful Black attacking strategy.
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quiescent positional style of play emphasizing blocking rather than racing.
This is more in line with human expert play (at least the particular human
experts who made the training data), but it often leads to complex prime vs.
prime and back-game situations that are hard for the network to evaluate
properly. This suggests one possible advantage of the TD approach over the
EP approach: by learning to imitate an expert teacher, the learning system
may get itself into situations that it doesn’t know how to handle. With the
alternative approach of learning from experience, the learner may not re-
produce the expert strategies, but at least it will learn to handle whatever
situations are brought about by its own strategy.

It’s also interesting that TD net ended up playing well in the early en-
gaged phase of play, whereas its play in the late racing phase is rather poor.
This is contrary to the intuitive notion that in temporal credit assignment
learning, states far from the end of the sequence will be harder to learn than
states near the end. Apparently the inductive bias due to the representation
scheme and network architecture is more important than temporal distance
to the final outcome. This may partially explain why training times were not
dramatically worse in the full-game situation than in the simplified endgame
situations.

4. Conclusions

We have seen that, from the theoretical point of view, there may be a number
of important limitations to the effectiveness of TD learning in large-scale
complex domains. The algorithm may not converge even for prediction only
tasks, let alone for combined prediction/control tasks. Even if the algorithm
does converge, it may get stuck in poor locally optimal solutions. Finally,
even if the algorithm is able to find good solutions, the scaling of required
training time with problem size or sequence length may be so poor that the
learning task would be effectively intractable.

In view of these potential difficulties, there are a number of very en-
couraging conclusions that can be drawn from the backgammon application.
Empirically the algorithm always converges to at least a local minimum. The
quality of solution found by the network is usually fairly good, and generally
improves with increasing numbers of hidden units. Furthermore, the scaling
of training time with the length of input sequences, and with the size and
complexity of the task, does not appear to be a serious problem. Finally, it
is encouraging that the network was able to learn to make good control de-
cisions as well as learn to estimate expected outcome. In fact, the network’s
ability to select good moves is much better than we have a right to expect,
because its absolute accuracy in estimating expected outcome is usually at
the 10% level, whereas the difference in expected outcome between optimal
and non-optimal moves is usually at the level of 1% or less. This suggests
that much of the network’s absolute prediction error is systematic error that
applies equally to all moves generated from the same initial position, and
thus cancels out in move-making decisions.
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The most encouraging finding, however, is a clear demonstration that in
the full-game situation, the TD learning network with zero built-in knowledge
can achieve a higher level of overall game performance than an identical
network trained on a massive data base of human expert examples. The
level of performance achieved is in fact equal to a program that convincingly
won the backgammon championship in a major tournament for computer
programs. This level of performance is so far beyond what one would have
expected beforehand that it seems worthwhile to devote some further effort to
understanding exactly how this is possible. It may also be worthwhile trying
to apply the combination of TD with back-propagation, or TD with other
supervised learning algorithms, to other difficult temporal credit assignment
problems.

Future prospects for the backgammon application look very promising.
It certainly seems possible that further improvements in performance can be
obtained merely by adding more hidden units to the network and training
for longer training times, although the quadratic scaling of CPU time with
the number of weights may limit how far this can be carried in practice. Bet-
ter results might also be obtainable by optimizing the parameter settings,
or by modifications of the TD training procedure. For example, the next
prediction could be replaced by an average over all possible dice rolls; this
could reduce limitations due to volatility. Also, partitioning the game into
a number of temporal phases and training separate specialist networks on
each phase may make it easier for each specialist network to learn the eval-
uation function appropriate for that particular phase. In actual game play,
the outputs of the specialists could be combined using smoothly-varying ap-
plication coefficients, as suggested in (Berliner, 1979). Finally, an improved
representation scheme, which uses features known to be useful in backgam-
mon evaluation functions, and which is better able to represent the value of
near-end states, might give substantially better results. Such improved rep-
resentation schemes are currently under investigation. As this article goes to
press, a TD net containing all of Neurogammon’s features is learning from
self-play. The network has reached 71% against Gammontool and contin-
ues to improve slowly with further training. It appears to be the strongest
program ever seen by this author.

Beyond this specific application, however, the larger and more important
issue is whether learning from experience can be useful and practical for more
general complex problems. Certainly the quality of results obtained in this
study suggests that the approach may work well in practice, and may work
better than we have a right to expect theoretically. There may also be some
intrinsic advantages to this approach over supervised training on a fixed set
of labeled exemplars. At the very least, for tasks in which the exemplars
are hand-labeled by humans, it eliminates the laborious and time-consuming
process of labeling the data. Furthermore, the learning system would not be
fundamentally limited by the quantity of labeled data, or by any intrinsic er-
rors in whatever process is used to label the data. Also, the learning system
might be able to avoid getting itself into situations that it doesn’t know how
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to handle, as can happen when one is learning by imitating an expert. Fi-
nally, preserving the intrinsic temporal nature of the task, and informing the
system of the consequences of its actions, may convey important information
about the task that is not necessarily contained in the labeled exemplars.
More theoretical and empirical work will be needed to establish the rela-
tive advantages and disadvantages of the two approaches. A result of this
may be the development of novel learning paradigms combining supervised
learning with learning from outcome; in combination it might be possible to
surpass what either approach could achieve individually. Preliminary work
supporting this hypothesis is reported in (Utgoff and Clouse, 1991).
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