Summing Cards

This week's Fiddler on the Proof (16 February 2024) asks:

You and a friend have a large deck of cards, all of which are numbered 1, 2, 3, or 4 . There are many of each of these numbers in the deck.

You alternate placing down one card at a time in a pile. If, at any point, the sum of the most recently played group of cards equals the sum of a group of cards played immediately before them, then you and your friend both slap the pile. Whoever slaps first wins the pile.

Here are some sequences of cards that would be slapped once the last card in the sequence is played:

- $3,2,3,4,1$ (because the last two cards have a sum equal to that of the two cards prior)
- $1,2,4,3,3$ (because the last one card has a "sum" equal to that of the one card prior)
- $2,3,1,2$ (because the last two cards have a sum equal to that of the one card prior) How many cards are in the longest possible sequence that is never slapped?

Extra Credit

In the preceding puzzle, the numbers on the cards were 1 through 4. Suppose, instead, they were numbered 1 through N.

When N is 5 , how many cards are in the longest possible sequence that is never slapped? What if N is 6 ? What if N is 7 ?

Answer

I wrote a computer program to look for the longest sequences of each N from 1 to 9 . Here are the results.

\mathbf{N}	Number of maximal sequences	Length of longest sequence
$\mathbf{1}$	1	1
$\mathbf{2}$	2	3
$\mathbf{3}$	8	7
$\mathbf{4}$	98	9
$\mathbf{5}$	1,508	15
$\mathbf{6}$	81,151	21
$\mathbf{7}$	$3,188,153$	31
$\mathbf{8}$	$324,402,815$	35
$\mathbf{9}$	$69,107,820,767$	47

A maximal sequence is a sequence that cannot be extended by adding another number onto the end. That's because any number you might add would create a repeated sum. For example, here are the 8 maximal sequences for $\mathrm{N}=3$:

$$
\begin{array}{ll}
1,2,1 & 2,3,1,3,2,3,1 \\
1,3,1 & 2,3,2 \\
1,3,2,3,1,3,2 & 3,1,3,2,3,1,3 \\
2,1,2 & 3,2,3,1,3,2,3
\end{array}
$$

Notice that the reverse of a maximal sequence is also a maximal sequence.

Question: Why are the longest lengths all odd numbers? Or is it just a coincidence?

Partition Plots

Looking at the following plots, it is fairly easy to see that no adjacent sums are repeated in the illustrated sequences of cards.

The top row of each chart is the sequence. The rows beneath it partition the sequence at different points. The blue numbers add up the cards going backwards from the partition. The red numbers add up the cards going forward from the partition.

The thing to notice is that the numbers in each row are all different. In particular, each of the blue sums is different to each of the red sums.

4 values, sequence of length 9:

1	4	3	4	2	4	3	4	$\mathbf{1}$
1	4	7	11	13	17	20	24	25
5	4	3	7	9	13	16	20	21
8	7	3	4	6	10	13	17	18
12	11	7	4	2	6	9	13	14
14	13	9	6	2	4	7	11	12
18	17	13	10	6	4	3	7	8
21	20	16	13	9	7	3	4	5
25	24	20	17	13	11	7	4	1

5 values, sequence of length 15 :

$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{4}$
1	3	5	9	14	17	21	26	27	30	32	36	41	44	48
4	3	2	6	11	14	18	23	24	27	29	33	38	41	45
6	5	2	4	9	12	16	21	22	25	27	31	36	39	43
10	9	6	4	5	8	12	17	18	21	23	27	32	35	39
15	14	11	9	5	3	7	12	13	16	18	22	27	30	34
18	17	14	12	8	3	4	9	10	13	15	19	24	27	31
22	21	18	16	12	7	4	5	6	9	11	15	20	23	27
27	26	23	21	17	12	9	5	1	4	6	10	15	18	22
28	27	24	22	18	13	10	6	1	3	5	9	14	17	21
31	30	27	25	21	16	13	9	4	3	2	6	11	14	18
33	32	29	27	23	18	15	11	6	5	2	4	9	12	16
37	36	33	31	27	22	19	15	10	9	6	4	5	8	12
42	41	38	36	32	27	24	20	15	14	11	9	5	3	7
45	44	41	39	35	30	27	23	18	17	14	12	8	3	4

6 values, sequence of length 21:

$\left.\begin{array}{ccccccccccccccccccccc}3 & \mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{4} & \mathbf{3} & \mathbf{5} & \mathbf{4} & \mathbf{6} & \mathbf{5} & \mathbf{6} & \mathbf{2} & \mathbf{6} & \mathbf{5} & \mathbf{6} & \mathbf{1} & \mathbf{3} & \mathbf{5} & \mathbf{6} & \mathbf{1} & \mathbf{6} \\ \hline 3 & 5 & 9 & 15 & 19 & 22 & 27 & 31 & 37 & 42 & 48 & 50 & 56 & 61 & 67 & 68 & 71 & 76 & 82 & 83 & 89 \\ 8 & 5 & 4 & 10 & 14 & 17 & 22 & 26 & 32 & 37 & 43 & 45 & 51 & 56 & 62 & 63 & 66 & 71 & 77 & 78 & 84 \\ 12 & 9 & 4 & 6 & 10 & 13 & 18 & 22 & 28 & 33 & 39 & 41 & 47 & 52 & 58 & 59 & 62 & 67 & 73 & 74 & 80 \\ 18 & 15 & 10 & 6 & 4 & 7 & 12 & 16 & 22 & 27 & 33 & 35 & 41 & 46 & 52 & 53 & 56 & 61 & 67 & 68 & 74 \\ 22 & 19 & 14 & 10 & 4 & 3 & 8 & 12 & 18 & 23 & 29 & 31 & 37 & 42 & 48 & 49 & 52 & 57 & 63 & 64 & 70 \\ 25 & 22 & 17 & 13 & 7 & 3 & 5 & 9 & 15 & 20 & 26 & 28 & 34 & 39 & 45 & 46 & 49 & 54 & 60 & 61 & 67 \\ 30 & 27 & 22 & 18 & 12 & 8 & 5 & 4 & 10 & 15 & 21 & 23 & 29 & 34 & 40 & 41 & 44 & 49 & 55 & 56 & 62 \\ 34 & 31 & 26 & 22 & 16 & 12 & 9 & 4 & 6 & 11 & 17 & 19 & 25 & 30 & 36 & 37 & 40 & 45 & 51 & 52 & 58 \\ 40 & 37 & 32 & 28 & 22 & 18 & 15 & 10 & 6 & 5 & 11 & 13 & 19 & 24 & 30 & 31 & 34 & 39 & 45 & 46 & 52 \\ 45 & 42 & 37 & 33 & 27 & 23 & 20 & 15 & 11 & 5 & 6 & 8 & 14 & 19 & 25 & 26 & 29 & 34 & 40 & 41 & 47 \\ 51 & 48 & 43 & 39 & 33 & 29 & 26 & 21 & 17 & 11 & 6 & 2 & 8 & 13 & 19 & 20 & 23 & 28 & 34 & 35 & 41 \\ 53 & 50 & 45 & 41 & 35 & 31 & 28 & 23 & 19 & 13 & 8 & 2 & 6 & 11 & 17 & 18 & 21 & 26 & 32 & 33 & 39 \\ 59 & 56 & 51 & 47 & 41 & 37 & 34 & 29 & 25 & 19 & 14 & 8 & 6 & 5 & 11 & 12 & 15 & 20 & 26 & 27 & 33 \\ 64 & 61 & 56 & 52 & 46 & 42 & 39 & 34 & 30 & 24 & 19 & 13 & 11 & 5 & 6 & 7 & 10 & 15 & 21 & 22 & 28 \\ 70 & 67 & 62 & 58 & 52 & 48 & 45 & 40 & 36 & 30 & 25 & 19 & 17 & 11 & 6 & 1 & 4 & 9 & 15 & 16 & 22 \\ 71 & 68 & 63 & 59 & 53 & 49 & 46 & 41 & 37 & 31 & 26 & 20 & 18 & 12 & 7 & 1 & 3 & 8 & 14 & 15 & 21 \\ 74 & 71 & 66 & 62 & 56 & 52 & 49 & 44 & 40 & 34 & 29 & 23 & 21 & 15 & 10 & 4 & 3 & 5 & 11 & 12 & 18 \\ 79 & 76 & 71 & 67 & 61 & 57 & 54 & 49 & 45 & 39 & 34 & 28 & 26 & 20 & 15 & 9 & 8 & 5 & 6 & 7 & 13 \\ 85 & 82 & 77 & 73 & 67 & 63 & 60 & 55 & 51 & 45 & 40 & 34 & 32 & 26 & 21 & 15 & 14 & 11 & 6 & 1 & 7 \\ 86 & 83 & 78 & 74 & 68 & 64 & 61 & 56 & 52 & 46 & 41 & 35 & 33 & 27 & 22 & 16 & 15 & 12 & 7 & 1 & 6\end{array}\right]$

7 values, sequence of length 31:

 \begin{tabular}{llllll|lllllllllllllllllllllllllllllll}
33 \& 32 \& 25 \& 19 \& 12 \& 7 \& 6 \& 10 \& 13 \& 17 \& 23 \& 30 \& 35 \& 42 \& 48 \& 55 \& 56 \& 63 \& 69 \& 76 \& 81 \& 88 \& 94 \& 98 \& 101 \& 105 \& 111 \& 118 \& 123 \& 130 \& 136

39 \& 38 \& 31 \& 25 \& 18 \& 13 \& 6 \& 4 \& 7 \& 11 \& 17 \& 24 \& 29 \& 36 \& 42 \& 49 \& 50 \& 57 \& 63 \& 70 \& 75 \& 82 \& 88 \& 92 \& 95 \& 99 \& 105 \& 112 \& 117 \& 124 \& 130

43 \& 42 \& 35 \& 29 \& 22 \& 17 \& 10 \& 4 \& 3 \& 7 \& 13 \& 20 \& 25 \& 32 \& 38 \& 45 \& 46 \& 53 \& 59 \& 66 \& 71 \& 78 \& 84 \& 88 \& 91 \& 95 \& 101 \& 108 \& 113 \& 120 \& 126

46 \& 45 \& 38 \& 32 \& 25 \& 20 \& 13 \& 7 \& 3 \& 4 \& 10 \& 17 \& 22 \& 29 \& 35 \& 42 \& 43 \& 50 \& 56 \& 63 \& 68 \& 75 \& 81 \& 85 \& 88 \& 92 \& 98 \& 105 \& 110 \& 117 \& 123

50 \& 49 \& 42 \& 36 \& 29 \& 24 \& 17 \& 11 \& 7 \& 4 \& 6 \& 13 \& 18 \& 25 \& 31 \& 38 \& 39 \& 46 \& 52 \& 59 \& 64 \& 71 \& 77 \& 81 \& 84 \& 88 \& 94 \& 101 \& 106 \& 113 \& 119

56 \& 55 \& 48 \& 42 \& 35 \& 30 \& 23 \& 17 \& 13 \& 10 \& 6 \& 7 \& 12 \& 19 \& 25 \& 32 \& 33 \& 40 \& 46 \& 53 \& 58 \& 65 \& 71 \& 75 \& 78 \& 82 \& 88 \& 95 \& 100 \& 107 \& 113

63 \& 62 \& 55 \& 49 \& 42 \& 37 \& 30 \& 24 \& 20 \& 17 \& 13 \& 7 \& 5 \& 12 \& 18 \& 25 \& 26 \& 33 \& 39 \& 46 \& 51 \& 58 \& 64 \& 68 \& 71 \& 75 \& 81 \& 88 \& 93 \& 100 \& 106

 $\begin{array}{lll}68 & 67 & 60 & 54 & 47 & 42 & 35 & 29 & 25 & 22 & 18 & 12 & 5 & 7 & 13 & 20 & 21 & 28 & 34 & 41 & 46 & 53 & 59 & 63 & 66 & 70 & 76 & 83 & 88 & 95 & 101\end{array}$ $\begin{array}{ll}75 & 74 & 67 & 61 & 54 & 49 & 42 & 36 & 32 & 29 & 25 & 19 & 12 & 7 & 6 & 13 & 14 & 21 & 27 & 34 & 39 & 46 & 52 & 56 & 59 & 63 & 69 & 76 & 81 & 88 & 94\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}81 & 80 & 73 & 67 & 60 & 55 & 48 & 42 & 38 & 35 & 31 & 25 & 18 & 13 & 6 & 7 & 8 & 15 & 21 & 28 & 33 & 40 & 46 & 50 & 53 & 57 & 63 & 70 & 75 & 82 & 88\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}88 & 87 & 80 & 74 & 67 & 62 & 55 & 49 & 45 & 42 & 38 & 32 & 25 & 20 & 13 & 7 & 1 & 8 & 14 & 21 & 26 & 33 & 39 & 43 & 46 & 50 & 56 & 63 & 68 & 75 & 81\end{array}$

89 \& 88 \& 81 \& 75 \& 68 \& 63 \& 56 \& 50 \& 46 \& 43 \& 39 \& 33 \& 26 \& 21 \& 14 \& 8 \& 1 \& 7 \& 13 \& 20 \& 25 \& 32 \& 38 \& 42 \& 45 \& 49 \& 55 \& 62 \& 67 \& 74 \& 80

96 \& 95 \& 88 \& 82 \& 75 \& 70 \& 63 \& 57 \& 53 \& 50 \& 46 \& 40 \& 33 \& 28 \& 21 \& 15 \& 8 \& 7 \& 6 \& 13 \& 18 \& 25 \& 31 \& 35 \& 38 \& 42 \& 48 \& 55 \& 60 \& 67 \& 73

102 \& 101 \& 94 \& 88 \& 81 \& 76 \& 69 \& 63 \& 59 \& 56 \& 52 \& 46 \& 39 \& 34 \& 27 \& 21 \& 14 \& 13 \& 6 \& 7 \& 12 \& 19 \& 25 \& 29 \& 32 \& 36 \& 42 \& 49 \& 54 \& 61 \& 67

109 \& 108 \& 101 \& 95 \& 88 \& 83 \& 76 \& 70 \& 66 \& 63 \& 59 \& 53 \& 46 \& 41 \& 34 \& 28 \& 21 \& 20 \& 13 \& 7 \& 5 \& 12 \& 18 \& 22 \& 25 \& 29 \& 35 \& 42 \& 47 \& 54 \& 60

114 \& 113 \& 106 \& 100 \& 93 \& 88 \& 81 \& 75 \& 71 \& 68 \& 64 \& 58 \& 51 \& 46 \& 39 \& 33 \& 26 \& 25 \& 18 \& 12 \& 5 \& 7 \& 13 \& 17 \& 20 \& 24 \& 30 \& 37 \& 42 \& 49 \& 55

121 \& 120 \& 113 \& 107 \& 100 \& 95 \& 88 \& 82 \& 78 \& 75 \& 71 \& 65 \& 58 \& 53 \& 46 \& 40 \& 33 \& 32 \& 25 \& 19 \& 12 \& 7 \& 6 \& 10 \& 13 \& 17 \& 23 \& 30 \& 35 \& 42 \& 48
\end{tabular}

 | 131 | 130 | 123 | 117 | 110 | 105 | 98 | 92 | 88 | 85 | 81 | 75 | 68 | 63 | 56 | 50 | 43 | 42 | 35 | 29 | 22 | 17 | 10 | 4 | 3 | 7 | 13 | 20 | 25 | 32 | 38 |
| :--- | $\begin{array}{lllllllllllllllllllllllllllllllll}134 & 133 & 126 & 120 & 113 & 108 & 101 & 95 & 91 & 88 & 84 & 78 & 71 & 66 & 59 & 53 & 46 & 45 & 38 & 32 & 25 & 20 & 13 & 7 & 3 & 4 & 10 & 17 & 22 & 29 & 35\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}138 & 137 & 130 & 124 & 117 & 112 & 105 & 99 & 95 & 92 & 88 & 82 & 75 & 70 & 63 & 57 & 50 & 49 & 42 & 36 & 29 & 24 & 17 & 11 & 7 & 4 & 6 & 13 & 18 & 25 & 31\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllll}144 & 143 & 136 & 130 & 123 & 118 & 111 & 105 & 101 & 98 & 94 & 88 & 81 & 76 & 69 & 63 & 56 & 55 & 48 & 42 & 35 & 30 & 23 & 17 & 13 & 10 & 6 & 7 & 12 & 19 & 25\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}151 & 150 & 143 & 137 & 130 & 125 & 118 & 112 & 108 & 105 & 101 & 95 & 88 & 83 & 76 & 70 & 63 & 62 & 55 & 49 & 42 & 37 & 30 & 24 & 20 & 17 & 13 & 7 & 5 & 12 & 18\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllll}156 & 155 & 148 & 142 & 135 & 130 & 123 & 117 & 113 & 110 & 106 & 100 & 93 & 88 & 81 & 75 & 68 & 67 & 60 & 54 & 47 & 42 & 35 & 29 & 25 & 22 & 18 & 12 & 5 & 7 & 13\end{array}$

