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ABSTRACT

In this paperwe presentTDLeaf()), a variationon the TD(A) algorithmthat enablest to be used
in conjunctionwith minimax search. We presentsomeexperimentsin both chessand backgammon
which demonstratés utility andprovide comparisonsvith TD(\) andanothedessradicalvariant, TD-
directedf). In particular our chessprogram,“KnightCap; usedTDLeaf(\) to learnits evaluation
function while playing on the FreelnternetChessSener (FICS,f i cs. onenet . net). It improved
from a 1650ratingto a 2100ratingin just 308 games.We discusssomeof the reasongor this success
andtherelationshipbetweerourresultsandTesaurcs resultsin backgammon.

1. Introduction

TD(}A), developedby Sutton[6], hasits rootsin the
learningalgorithmof Samuels checkergprogram(4]. It
is anelggantalgorithmfor approximatinghe expected
long term future costof a stochastiaynamicalsystem
asa function of the currentstate. The mappingfrom
statedo future costis implementedy a parameterised
function approximatorsuchasa neuralnetwork. The
parameterareupdatednlineaftereachstatetransition,
or in batchupdatesafter several statetransitions. The
goalof thealgorithmis to improve thecostestimatess
the numberof obseredstatetransitionsandassociated
costsincreases.

Tesaurcs TD-Gammonis perhapghe mostremark-
ablesucces®f TD()). It is a neuralnetworkbackgam-
monplayerthathasprovenitself to be competitize with
thebesthumanbackgammorplayers[8].

Mary authors have discussedthe peculiarities of
backgammomhatmakeit particularlysuitablefor Tem-
poralDifferencdearningwith self-play[7, 5, 3]. Princi-
ple amongthesearespeedof play. TD-Gammonearnt
from severalhundreadthousandyamesof self-play rep-
resentationsmoothnessthe evaluationof a backgam-
mon position is a reasonablysmoothfunction of the
position(viewed,say asavectorof piececounts) mak-
ing it easierto find a goodneuralnetworkapproxima-
tion, andstodasticity backgammoris arandomgame
which forcesat leasta minimal amountof exploration
of searchspace.

As TD-Gammonin its original form only searched
one-ply ahead,we feel this list should be appended
with: shallow seach is good enough against hu-
mans There are two possiblereasonsfor this; ei-
ther one doesnot gain a lot by searchingdeeperin

backgammor{questionableagiven that recentversions
of TD-Gammonsearchto three-ply for a significant
performancémprovement) or humansareincapableof
searchingleeplyandso TD-Gammonis only compet-
ing in apool of shallav searchers.

In contrastfinding arepresentatiofor chesspthello
or Go which allows a small neural network to order
moves at one-ply with near human performanceis a
far moredifficult task[9, 11, 5]. For thesegamesye-
liable tactical evaluationis difficult to achieze without
deepsearch. This requiresan exponentialincreasen
the numberof positionsevaluatedasthe searchdepth
increasesConsequentlythe computationatostof the
evaluationfunctionhasto below andhencemostchess
andothelloprogramauselinearfunctions.

In thenext sectionwe look at reinforcementearning
(thebroadcatgory into which TD(A) falls), andthenin
subsequergectionsvelook atTD()) in somedetailand
introducetwo variationson thetheme: TD-directedd)
andTDLeaf(). Thefirst usesminimaxsearcho gen-
eratebettertraining data, and the second,TDLeaf(}),
is usedto learnan evaluationfunction for usein deep
minimaxsearch.

2. Reinforcement Learning

Thepopularlyknown andbestunderstoodearningtech-
niquesfall into the categyory of supervisedearning
This cateyory is distinguishedy the fact that for each
input upon which the systemis trained, the “correct”
outputis known. This allows us to measurethe error
anduseit to trainthesystem.

For example,if our systemmapsinput X; to output
Y/, then, with Y; asthe “correct” output, we canuse
(Y! — Y;)? asa measureof the error correspondingo



X;. Summingthis valueacrossa setof training exam-
plesyieldsanerrormeasuref theform }, (Y/ — Y;)?,
which canbe usedby trainingtechniquesuchasback
propagation.

Reinforcemenkearningdifferssubstantiallyfrom su-
pervisedlearning in that the “correct” output is not
known. Hence,thereis no direct measureof error,
insteada scalarreward is given for the responseso a
seriesof inputs.

Considermnagentreactingto its ervironment(agen-
eralisationof the two-playergamescenario) Let S de-
note the set of all possibleervironmentstates. Time
proceedswith the agentperformingactionsat discrete
time stepst = 1,2,.... At timet the agentfinds the
ervironmentin statez; € S, andhasavailablea setof
actionsA,,. Theagentchoosesan actiona; € A,,,
which takesthe ervironmentto statez;; with proba-
bility p(z:, 241, a:). After a determinedseriesof ac-
tionsin the environment,perhapsvhenagoalhasbeen
achieved or hasbecomeimpossible the scalarreward,
r(zn) whereN is thenumberof actionsin theseriesjs
awardedto theagent. Theserewardsareoftendiscrete,
eg: “1” for success;-1" for failure,and“0” otherwise.

For easeof notationwe will assumaeall seriesof ac-
tionshave afixedlengthof N (thisis not essential).lf
we assumehatthe agentchoosests actionsaccording
to somefunction a(z) of the currentstatez (so that
a(z) € A;), theexpectedrewardfrom eachstater € S
is givenby

J*(z) = El’ler(IN)7 1)
wherethe expectationis with respectto the transition
probabilitiesp(z, z¢41, a(xt)).

Oncewe have J*(u), we canensurethatactionsare
chosenoptimally in ary stateby using the following
equationto minimise the expectedreward for the en-
vironmentie: the otherplayerin thegame.

a*(x) = amgmin,., J*(z,,w). (2)

For very large statespacesS it is not possiblestore
the value of J*(z) for every z € S, soinsteadwe
mighttry to approximate/* usingaparameterisefiinc-
tion class.J: S x R* — R, for examplelinear func-
tion, splines,neuralnetworks,etc. J(-, w) is assumed
to be a differentiablefunction of its parametersy
(wr,...,wg). Theaimisto find w sothat J(z, w) is
“closeto” J*(u), atleastin sofar asit generateshe
correctorderingof moves.

This approactio learningis quite differentfrom that
of supervisedearningwherethe aimis to minimisean
explicit errormeasuremerfor eachdatapoint.

Another significant difference between the two
paradigmsis the natureof the datausedin training.
With supervisedearningit is fixed, whilst with rein-
forcementiearningthe stateswvhich occurduringtrain-
ing aredependenipontheagents choiceof action,and

thuson the training algorithmwhich is modifying the
agent.Thisdependenccomplicateshetaskof proving
corvergencefor TD()) in thegenerakase2].

3. TheTD(X) algorithm

TemporalDifferencelearningor TD(}), is perhapghe
bestknown of thereinforcementearningalgorithms.It
provides a way of using the scalarrewards suchthat
existing supervisedraining techniquescan be usedto
tunethefunctionapproximatorTesaurcs TD-Gammon
for example,usesdackpropagatiorio traina neuralnet-
work functionapproximatorwith TD(A) managinghis
processandcalculatingthe necessargrrorvalues.

Herewe considethow TD(A) would be usedto train
an agentplaying a two-playergame,suchas chessor
backgammon.

Supposery, ..., zn_1, ¢y IS asequencef statesn
onegame. For a given parameterectorw, definethe
tempoal differenceassociatedavith thetransitionz; —
Ti41 by

de := J(xig1, w) — J (2, w). (3)

Notethatd; measurethedifferencebetweerthereward
predictedby J (-, w) attime¢ + 1, andthe reward pre-
dictedby .J (-, w) attimet. Thetrue evaluationfunction
J* hastheproperty

El‘t+1ll‘t [‘]* (It+1) - J* (It)] = 07

soif J(-, w) is agoodapproximatiorto J*, E,,, ,|»,d
shouldbe closeto zero. For easeof notationwe will
assumghatJ(zy,w) = r(zy) always sothatthefinal
temporaldifferencesatisfies
dy_o1 = J(zy,w)—J(zn_1,w) = r(zn)—J (zNn_1, w).
Thatis, dy—; is the differencebetweenthe true out-
comeof the gameandthe predictionat the penultimate
move.

At theendof the game the TD()) algorithmupdates
the parametewectorw accordingo theformula

N-1 N-1
wi=w+ Z VJ(ze, w) Z Nt 4)
t=1 j=t

whereV J (-, w) is the vectorof partial derivativesof .J
with respectto its parameters.The positive parameter
a controlsthelearningrateandwouldtypically be“an-
nealed”towardszeroduringthe courseof along series
of games.The parameten € [0, 1] controlsthe extent
to which temporaldifferencegropagatebackwardsn
time. To seethis, compareequation4) for A = 0:

N-1
wi=w+ o Z Vj(a:t, w)dy

t=1

N-1

w4+ a Z VJ(zs, w) {J(mH_l,w) —

t=1

(¢, w)

()



w4+ a Z VJ (2, w) {7‘(931\7) -
(6)

Considereachterm contributing to the sumsin equa-
tions (5) and (6). For A = 0 the parametewnectoris
being adjustedin sucha way asto move fgmt, w) —
the predictedreward attime ¢ — closerto J(z¢41, w)

— thepredictedewardattimet + 1. In contrast,TD(1)
adjuststhe parametewrectorin suchawvay asto move
thepredictedrewardattime stept closerto thefinal re-
wardattime stepN. Valuesof A betweerzeroandone
interpolatebetweerthesetwo behaiours. Notethat (6)

is equivalentto gradientdescenton the error function

- 2
E(w) = 205" [r(en) = J(ae, w)]

Tesaurd7, 8] andthosewho have replicatechiswork
with backgammormeportthattheresultsareinsensitie
to thevalueof A andcommonlyuseavaluearound0.7.
Recentwork by BealeandSmith[1] however, suggests
thatin the domainof chessthereis greatersensitvity
to the value of A, with it perhapsbeing profitableto
dynamicallytuneA.

Successk parameteupdatesiccordingo the TD())
algorithmshould, over time, lead to improved predic-
tions of the expectedreward J (-, w). Providedthe ac-
tionsa(z;) areindependenof the parametervectorw,
it canbe shown thatfor linear J (-, w), the TD()) algo-
rithm corvergesto anearoptimalparametevector[10].
Unfortunately thereis no suchguarantesf J(-, w) is
non-lineaff10], orif a(z:) depend®nw [2].

4. Two New Variants

For amuments sake,assumery actiona takenin state
z leadsto predeterminedstatewhich we will denote
by z/,. Onceanapproximation/(-,w) to .J* hasbeen
found, we canuseit to chooseactionsin statez by
picking the actiona € A, whosesuccessostatez’,

minimizesthe opponents expectedreward':

a(z) = algminaeArf(a:ﬁl, w). (")

This wasthe stratgy usedin TD-Gammon. Unfortu-
nately for gamedike othelloandchesst is difficult to
accuratelyevaluateapositionby lookingonly onemave
or ply ahead. Most programsfor thesegamesemploy
someform of minimaxsearch.In minimaxsearchpne
builds a treefrom positionz by examiningall possible
movesfor the computerin thatposition,thenall possi-
ble movesfor theopponentandthenall possiblemoves
for thecomputerandsoonto somepredeterminedepth
d. Theleaf nodesof the tree arethenevaluatedusing
a heuristicevaluation function (suchas J (-, w)), and

1If successoistatesare only determinedstochasticallyby the
choiceof a, we would choosethe action minimizing the expected
rewardoverthe choiceof successostates.

theresultingscoresare propagatedackup the treeby
choosingat eachstagethe move which leadsto the best
positionfor the playeron the move. Seefigure 1 for
anexamplegametreeandits minimaxevaluation.With
referencao thefigure,notethattheevaluationassigned
to therootnodeis the evaluationof the leaf nodeof the
principal variation; the sequenc®f movestakenfrom
therootto theleafif eachsidechooseshebestavailable
move.

Our TD-directedq) variant utilises minimax search
by allowing play to be guidedby minimax, but still de-
finesthe temporaldifferencego be the differencesn
the evaluationsof successie boardpositionsoccurring
duringthegame asperequation(3).

Let J4(z, w) denotethe evaluationobtainedfor state
x by applying J(-, w) to the leaf nodesof a depthd
minimaxsearchfrom z. Ouraimis to find a parameter
vectorw suchthat J,(-, w) is a goodapproximatiorto
the expectedreward J*. Oneway to achieve this is to
applythe TD()) algorithmto .J,(, w). Thatis, for each
sequencef positionszy, ..., zx in agamewe define
thetemporaldifferences

do = Jalaess, w) — Ja(ee, )

(8)

asper equation(3), andthenthe TD(A) algorithm (4)
for updatingthe parametevectorw becomes

N-1
w4 a Z VJa(zt,

t=1

w

N-1
w) | >N . (9)
Jj=t

One problem with equation(9) is that for d > 1,

Ja(z,w) is not a necessarilya differentiablefunction

of w for all valuesof w, evenif J(-, w) is everywhere
differentiable. This is becausdor somevaluesof w

therewill be “ties” in the minimax search,i.e. there
will be morethanonebestmove availablein someof

thepositionsalongthe principalvariation,which means
thatthe principalvariationwill notbeunique.Thus,the
evaluationassignedo the root node, J4(z, w), will be
the evaluationof ary oneof anumberof leafnodes.

Fortunately undersomemild technicalassumptions
on the behaiour of J(z,w), it canbe shavn that for
all statesz and for “almostall” w € R*, J(z,w)
is a differentiablefunction of w. Note that j@(r, w)
is also a continuousfunction of w wheneer J(z, w)
is a continuousfunction of w. This implies that even
for the“bad” pairs(z, w), V.J;(z, w) is only undefined
becausét is multi-valued. Thuswe canstill arbitrarily
choose particularvaluefor de(a:, w) if w happenso
landon oneof thebadpoints.

Basedon theseobsenrationswe modifiedthe TD())
algorithmto takeaccounof minimaxsearchinsteadof
workingwith theroot positionsz, ..., zx, the TD(A)
algorithmis appliedto theleaf positionsfound by min-
imax searchfrom the root positions. We call this algo-
rithm TDLeaf(}).
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Fig. 1: Full breadth3-ply searchreeillustratingthe minimaxrule for propagatingzalues.Eachof theleaf nodegH—O) s givenascoreby the
evaluationfunction, J(~, w). Thesescoresarethenpropagatedackup the treeby assigningo eachopponentsinternalnodethe minimum
of its children’s values andto eachof ourinternalnodesthe maximumof its children’svalues.Theprinciplevariationis thenthe sequencef
bestmovesfor eithersidestartingfrom theroot node,andthisis illustratedby a dashedine in thefigure. Note thatthe scoreat the root node
A is the evaluationof the leaf node(L) of the principalvariation. As thereareno ties betweerany siblings,the derivative of A's scorewith

respecto the parameters is just V.J (L, w).

5. Experimentswith Chess

In this sectionwe describeseveralexperimentsn which
the TDLeaf(\) and TD-directedf) algorithms were
usedto train theweightsof alinear evaluationfunction
for our chesgprogram calledKnightCap.

For our mainexperimentwe took KnightCap’s eval-
uationfunction andsetall but the materialparameters
to zero. The materialparametersvereinitialisedto the
standardcomputer”value$. With theseparameteset-
tingsKnightCapwasstartedon the FreelnternetChess
sener (FICS,fi cs. onenet . net). To establishits
rating, 25 gameswere played without modifying the
evaluationfunction,afterwhichit hada blitz (fasttime
control) rating of 1650 4+ 50°. We thenturnedon the
TDLeaf()) learningalgorithm, with A = 0.7 andthe
learningrate« = 1.0. The value of A was chosen
arbitrarily, while o wassethigh enoughto ensurerapid
modificationof the parameters.

After only 308gamesKnightCap5ratingclimbedto
2110 + 50. This rating putsKnightCapat the level of
US Master

We repeatedthe experimentusing TD-directed§),
and obsened a 200 point rating rise over 300 games.
A significantimprovementbut slowerthanTDLeaf(}).

Thereare a numberof reasondor KnightCaps re-
markablerateof improvement.

1. KnightCapstartedoutwith intelligentmaterialpa-
rameters. This put it closein parametespaceto
mary far superiorparametesettings.

2. Most playerson FICS prefer to play opponents
of similar strength andso KnightCaps opponents
improvedasit did. Henceit recevedbothpositive
andnegative feedbackrom its games.

3. KnightCapwasnot learningby self-play

21 for a pawn, 4 for aknight, 4 for a bishop,6 for arook and12
for aqueen.

3After someexperimentationywe have estimatedhe standardie-
viation of FICSratingsto be50 ratingspoints.

To investigatethe importance of some of these
reasonsye conductedseveralmoreexperiments.

Goodinitial conditions.
A secondxperimentwasrunin which KnightCapsco-
efficientswereall initialisedto the valueof a pavn.
Playing with this initial weight setting KnightCap
hada blitz ratingof 1260 + 50. After morethan1000
gameson FICS KnightCaps rating has improved to
about1540 + 50, a 280 point gain. This is a much
slower improvementthanthe original experiment,and
makedt clearthatstartingneara goodsetof weightsis
importantfor fastcorvemgence.

Self-Play

Learningby self-playwasextremely effective for TD-

Gammonhutasignificantreasorfor thisis thestochas-
ticity of backgammon.However, chessis a determin-
istic gameand self-play by a deterministicalgorithm

tendsto resultin alarge numberof substantiallysimilar

games.Thisis nota problemif thegamesseenin self-

play are “representatie” of the gamesplayedin prac-
tice, however KnightCaps self-play gameswith only

non-zeramaterialweightsarevery differentto the kind

of gameshumansf thesameevel would play.

To demonstrat¢hatlearningby self-playfor Knight-
Capis not as effective as learningagainstreal oppo-
nents,we ran anotherexperimentin which all but the
materialparametersvereinitialised to zero again, but
thistime KnightCaplearntby playingagainsitself. Af-
ter 600 games(twice asmary asin the original FICS
experiment) we playedtheresultingversionagainsthe
goodversionthatlearnton FICS,in a 100 gamematch
with theweightvaluesfixed. The FICStrainedversion
won 89 pointsto theself-playversions 11.

6. Backgammon Experiment

For our backgammorexperimentwe werefortunateto
have Mark Land (University of California, SanDiego)



provide us with the sourcecodefor his LGammonpro-
gramwhich hasbeenimplementedalong the lines of
Tesaurcs TD-Gammon([7 8].

Along with the codefor LGammon,Land also pro-
vided a set of weightsfor the neural network. The
weightswere usedby LGammonwhen playing on the
First Internet BackgammonSener (FIBS, fibs.com),
whereLGammonachiered a rating which rangedfrom
1600to 1680,significantlyabose themearratingacross
all playersof about1500. For corveniencewe referto
theweightsasthe FIBSweights

Using LGammonand the FIBS weightsto directly
comparesearchingo two-ply againsisearchingo one-
ply, we obsenedthattwo-plyis strongeiby 0.25points-
pergame asignificantdifferencein backgammonkur-
theranalysisshovedthatin 24%of positions themove
recommendedy a two-ply searchdiffered from that
recommendedy a one-plysearch.

Subsequentlywe decidedto investigatehow well
TD-directed) and TDLeaf(\), both of which can
searchmore deeply might perform. Our experiment
soughtto determinewhethereither TD-directedf) or
TDLeaf(\) could find better weights than standard
TD(A).

To testthis, we suitably modified the algorithmsto
accountfor the stochasticityinherentin the game,and
tooktwo copiesof the FIBS weights— theendproduct
of astandardrD(A) trainingrun of 270,000gamesWe
trainedonecopyusingTD-directed) andtheotherus-
ing TDLeaf(\). Eachnetworkwastrainedfor 50000
gamesand then played againstthe unmodified FIBS
weightsfor 1600 games with both sidessearchingo
two-ply andthe matchscorerecorded.

The resultsfluctuatedaroundparity with the FIBS
weights(theproductof TD(X) training),with no statisti-
cally significantchangen performancdeingobsenred.
This suggestshatthe solutionfoundby TD(}), is either
ator neartheoptimalfor two-ply play.

7. Discussion and Conclusion

We have introducedTDLeaf(}\), a variantof TD()) for
trainingan evaluationfunctionusedin minimaxsearch.
The only extra requirementf the algorithmis thatthe
leaf-nodeof the principalvariationsbe storedthrough-
outthegame.

We presentedsome experimentsin which a chess
evaluationfunctionwastrainedby on-lineplay against
mixture of humanandcomputeropponentsThe exper
imentsshawv boththeimportanceof “on-line” sampling
(asopposedo self-play),andthe needto startneara
goodsolutionfor fastcorvergence.

We comparedraining usingleaf nodes(TDLeaf(}))
with training using root nodes,both in chesswith a
linear evaluationfunction and 5-10 ply search,andin
backgammorwith a one hiddenlayer neural-network
evaluationfunction and 2-ply search.We found a sig-
nificantimprovementrainingontheleafnodesn chess,

which can be attributed to the substantiallydifferent
distribution over leaf nodescomparedto root nodes.
No suchimprovementwas obsered for backgammon
which suggestshatthe optimal networkto usein 1-ply
searchs closeto the optimalnetworkfor 2-ply search.

On the theoreticalside, it hasrecentlybeenshavn
that TD(A) converges for linear evaluation functions
[10]. An interestingavenuefor further investigation
would be to determinewhetherTDLeaf(\) hassimilar
convergenceproperties.
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